CAN Communication Protocol_V1.1

Jul, 2021

Overview

The default communication baud rate of the CAN interface is 1MHz, and the upper computer can configure the following baud rate: 1MHz, 500KHz, 250KHz, 125KHz and 100KHz. All CAN messages of the current motor driver are data frames and standard frames. All bytes are in **little-endian byte order**. (The data communication medium between the motor driver and the upper computer is RS485 interface or USB interface)

In particular, the binary length of the frame ID of CAN communication standard frame is 11 bits. In this protocol, the frame ID of the communication frame is composed of two parts: **the upper 7 bits are the command code, and the lower 4 bits are the device ID.** For example: the relative position of the motor with the device address of 1 needs to be controlled to rotate 1000Count ([command code: 0x56] [device address: 0x01]). According to the frame ID composition format of the CAN communication frame of this protocol, the content of the CAN communication frame of this protocol, the protocol content, the length of data frame DLC is 0x02, and the frame content is 0xe8, 0x03.

The default device address of the motor driver is 0x01.

The device address of the motor driver can be configured through the upper computer, and the configurable range of the address is 1~32. The current address of the device can be obtained according to the flashing status of the green LED on the driver board.

Control Command List

Supported CAN custom control commands are as follows:

CATEGORY	COMMAND	COMMAND FUNCTION DESCRIPTION	
CATEGORY	CODE	COMMAND FUNCTION DESCRIPTION	
	0x20	Motor encoder calibration (the motor has been	
Encoder	0x20	calibrated before the factory)	
Information	0x21	Set the current position of the motor as the origin	
	0x2F	Read encoder real-time data	
Motor	0x40	Read motor status information (voltage, current,	
Running	0x40	temperature, fault code, running status)	
Status	0x41	Clear motor fault code	
		After turning off the motor, the motor enters a free	
	0x50	state and is not controlled (the motor is in this state	
		after it is powered on)	
	0x51 0x52	The motor returns to the set origin according to the	
		multi-turn absolute angle	
N 4 - 1		The motor returns to the set origin according to the	
Motor		shortest distance, and the rotation angle is not more	
Control		than 180°	
	0x53	Motor open-loop control	
	0x54	Motor speed closed-loop control	
	0x55	Motor absolute position closed-loop control	
	0x56	Motor relative position closed-loop control	
	0x57	Read and configure position closed-loop target speed	

Single motor Command description

Motor encoder calibration [0x20]

The encoder has been calibrated before the motor leaves the factory. If the user disassembles the motor drive board, he/she needs to execute this command to re-calibrate the motor encoder. Note: When calibrating the motor encoder, please make sure that the motor is in no-load state, and at the same time, do not interfere with the motor rotation during the calibration process.

• The host sends to the motor

SN	Field Content	Content Description (data)
CAN	StdID= (0x20<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x00	Dataframe length

• The motor responds to the host

SN	Field Content	Content Description (data)
CAN	StdID= (0x20<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x00	Dataframe length

Set the current position of the motor as the origin [0x21]

After the motor receives the command, set the current position of the motor as the origin and switch the motor operation mode to off mode

-			
	SN	Field Content	Content Description (data)
	CAN	StdID = (0x21<<4	CAN communication frame ID
	StdID	DevAddr)	(command code + address)
	DLC	0x00	Dataframe length

The host sends to the motor

SN	Field Content	Content Description (data)
CAN	StdID= (0x21<<4 DevAddr)	CAN communication frame ID

	StdID		(command code + address)
	DLC	0x03	Dataframe length
		Low byte of the encoder	
	DATA[0]	original angle	Original angle of encoder chip
	DATA[1]	High byte of the encoder	Angle° = val*(360/16384)
		original angle	
		Configuration success sign	【0x00: failure】
	DATA[2]	Configuration success sign	[0x01: success]

 Read the encoder single-turn absolute angle value, multi-turn absolute angle value and mechanical speed [0x2F]

The range of single-turn absolute is 0x00-0X3FFF (that is, 0~16383).

• The host sends to the motor

SN	Field Content	Content Description (data)
CAN	StdID= (0x2F<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x00	Dataframe length

Field Content	Content Description (data)
StdID = (0x2F<<4	CAN communication frame ID
DevAddr)	(command code + address)
0x08	Dataframe length
Single-turn absolute angle	Motor single-turn absolute
low byte	angle (uint16 t)
Single-turn absolute angle	
high byte	Angle° = val*(360/16384)
Multi-turn absolute angle	
low byte 1	
Multi-turn absolute angle	Motor multi-turn absolute
byte 2	angle(int32_t) Total Angle ^o = $val*(260/16284)$
Multi-turn absolute angle	Total Angle° = val*(360/16384)
byte 3	
	StdID = (0x2F<<4 DevAddr) 0x08 Single-turn absolute angle low byte Single-turn absolute angle high byte Multi-turn absolute angle low byte 1 Multi-turn absolute angle byte 2 Multi-turn absolute angle

DATA[5]	Multi-turn absolute angle high byte 4	
DATA[6]	Mechanical speed low byte	Motor speed (int16 t)
DATA[7]	Mechanical speed high byte	Unit: 0.1Rpm

Read the real-time status information of the motor [0x40]

Real-time voltage, real-time current, real-time temperature, fault code, operating status

- Content Description (data) SN Field Content CAN CAN communication frame ID StdID= (0x40<<4 | DevAddr) StdID (command code + address) DLC 0x00 Dataframe length
- The host sends to the motor ۲

SN	Field Content	Content Description (data)
CAN	CAN StdID= (0x40<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x05	Dataframe length
DATA[0]	Voltage	Voltage = val*0.2(V)
DATA[1]	System current	System current = val*0.03(A)
DATA[2]	System temperature	System temperature=
DATA[2]	System temperature	val*0.4(℃)
	Fault code	The motor enters off mode
		after the fault occurs. The red
		light will flash and the motor is
DATA[3]		out of control.
		[Bit0]: Voltage fault
		[Bit1]: Current fault
		[Bit2]: Temperature fault
	Operating status	0: Closed state
DATA[4]		1: Open-loop mode
		3: Speed mode
		5: Position mode

Clear current system faults (voltage fault, current fault, temperature fault) [0x41]

SN	Field Content	Content Description (data)	
CAN	$(0 \times 1 \times 2 \times 1 \times 2 \times 1 \times 2 \times 2 \times 2 \times 2 \times 2$	CAN communication frame ID	
StdID	StdID= (0x41<<4 DevAddr)	(command code + address)	
DLC	0x00	Dataframe length	

• The host sends to the motor

• The motor responds to the host

Except for the different response command code, the content that motor responses to the host is the same with the content of 0x40 command code.

- Turn off the motor, it enters the off mode, and is in a free state uncontrolled. The motor is in this mode after powered on. [0x50]
 - The host sends to the motor

SN	Field Content	Content Description (data)
CAN	StdD- (0vE0<<1 DovAddr)	CAN communication frame ID
StdID	StdID= (0x50<<4 DevAddr)	(command code + address)
DLC	0x00	Dataframe length

• The motor responds to the host

Except for the different response command code, the content that motor responses to the host is the same with the content of 0x2F command code.

- The motor returns to the set origin according to the current multi-turn absolute angle [0x51]
 - The host sends to the motor

SN	Field Content	Content Description (data)
CAN	StdID= (0x51<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x00	Dataframe length

Except for the different response command code, the content that motor responses to the host is the same with the content of 0x2F command code.

- The motor returns to the set origin with the shortest distance, and the rotation angle is not more than 180° [0x52]
 - The host sends to the motor

SN	Field Content	Content Description (data)
CAN	StdID= (0x52<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x00	Dataframe length

The motor responds to the host

Except for the different response command code, the content that motor responses to the host is the same with the content of 0x2F command code.

Motor open-loop control [0x53]

The type of input parameter is int16 t, and the value range is -32768~32767. When the parameter value is a negative number, it means that the motor is in reversion. The greater the Power value, the greater the output power.

- SN Field Content Content Description (data) CAN CAN communication frame ID StdID= (0x53<<4 | DevAddr) StdID (command code + address) DLC 0x02 Dataframe length The data type of output power DATA[0] Power value low byte DATA[1] Power value high byte is int16 t
- The host sends to the motor

The motor responds to the host

Except for the different response command code, the content that motor responses to the host is the same with the content of 0x2F command code.

Motor speed closed-loop control [0x54]

The parameter type is int16_t, and the value range is -32768~32767. When the parameter value is a negative number, it means that the motor is in reversion. The unit of speed is 0.1RPM.

SN	Field Content	Content Description (data)
CAN	StdID= (0x54<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x02	Dataframe length
DATA[0]	Target speed low byte	Target speed, unit: 0.1RPM
DATA[1]	Target speed high byte	Data type: int16_t

• The host sends to the motor

• The motor responds to the host

Except for the different response command code, the content that motor responses to the host is the same with the content of 0x2F command code.

Motor absolute position closed-loop control [0x55]

One turn of the motor is 16384 counts.

	SN	Field Content	Content Description (data)
	CAN	StdD- (0) EE <<4 Dou/Adds)	CAN communication frame ID
	StdID	StdID= (0x55<<4 DevAddr)	(command code + address)
	DLC	0x04	Dataframe length
	DATA[0]	Target position low byte 1	Toward about the position Count
	DATA[1]	Target position byte 2	Target absolute position Count
	DATA[2]	Target position byte 3	value Data type: uint32 t
	DATA[3]	Target position high byte 4	

• The host sends to the motor

• The motor responds to the host

Except for the different response command code, the content that motor responses to the host is the same with the content of 0x2F command code.

Motor relative position closed-loop control [0x56]

The relative movement angle of the motor based on the current position. The data type of the input parameter is int16_t, and the value range is -32768~32767. When the parameter value is a negative number, it means that the motor is in reversion. One turn of the motor is 16384 counts.

SN	Field Content	Content Description (data)
CAN	StdID= (0x56<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x02	Dataframe length
DATA[0]	Relative position low byte	Count value of relative
	Polotivo position high huto	movement
DATA[1]	Relative position high byte	Data type: int16_t

• The host sends to the motor

• The motor responds to the host

Except for the different response command code, the content that motor responses to the host is the same with the content of 0x2F command code.

Read and configure position closed-loop target speed [0x57]

Read the current configured position closed-loop target speed of motor, or configure position closed-loop target speed parameter to the motor. After the motor is powered on, the default value of position closed-loop target speed is the value saved to the motor through 0x0E command. The position closed-loop target speed written by current command is just written to the motor, it won't be saved after the power turns off. The motor will move at the configured speed in the absolute position or relative position closed-loop mode after written successfully.

SN	Field Content	Content Description (data)
CAN	StdID= (0x57<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x03	Dataframe length
DATA[0]	Read and write parameter sign	0x00: Read position closed-loop target speed 0x01: Configure position

• The host sends to the motor

		closed-loop target speed
DATA[1]	Position closed-loop target speed low byte	When DATA[0] is 0x00, read the position closed-loop target speed, this field can be any
DATA[2]	Position closed-loop target speed high byte	value When DATA[0] is 0x01, configure the position closed-loop target speed, this field is the target speed value that needs to be configured. The data type is int16_t, and the unit is 0.1RPM

SN	Field Content	Content Description (data)
CAN	StdID= (0x57<<4 DevAddr)	CAN communication frame ID
StdID		(command code + address)
DLC	0x02	Dataframe length
	Position closed-loop target	The data type of the target
DATA[0]	speed low byte	speed in the position closed
	Desition algorid loop torest	loop mode of the motor feedback is int16_t, and the
DATA[1]	Position closed-loop target	
	speed high byte	unit is 0.1RPM

Attachment: Protocol update log

Protocol version V1.1

- 1. Modify the 0x54 speed closed-loop control command to support lower speed control, and the speed unit is 0.1RPM
- 2. Add 0x57 command to read or configure the operating speed of the motor position closed-loop control mode